Pick's Formula

Let's call a point in he plane a lattice (or an integer) point if both of its coordinates are integers. Let P be a lattice polygon in the plane, that is, a polygon all of whose vertices are lattice points. Let I be the number of lattice points that are strictly inside P and B be the number of lattice points that are on the boundary of P. The purpose of this project is to prove Pick's formula which expresses the area A of P in terms of I and B :

$$
A=I+\frac{B}{2}-1
$$

Problem 1. Pick a complicated enough lattice polygon P. Compute I, B, and A (directly, not using Pick's formula). Check that Pick's formula is satisfied.

Problem 2. Let P be a lattice rectangle with sides parallel to the coordinate axes. We can then assume that the vertices of P are at the points $(0,0),(a, 0),(0, b)$, and (a, b) for some integers a and b. Check that Pick's formula holds for P.

Problem 3. Now let T be a lattice triangle with two sides parallel to the coordinate axes. We can then assume that the vertices of T are at the points $(0,0),(a, 0)$, and $(0, b)$ for some integers a and b. Check that Pick's formula holds for T. Hint: Consider a rectangle P from previous problem. Let I_{P}, B_{P} and A_{P} be the numbers of interior lattice points, boundary lattice points, and the area for P, while I_{T}, B_{T}, and A_{T} be the corresponding parameters for T. Let c be the number of lattice points on the hypothenuse of T (not counting the vertices). From Problem 2, we already know that $A_{P}=I_{P}+B_{P} / 2-1$. Express A_{P}, I_{P}, and B_{P} in terms of I_{T}, B_{T}, A_{T}, and c. Plug into Pick's formula for P. Obtain Pick's formula for T.

Problem 4. Next, let T be an arbitrary lattice triangle. Check that Pick's formula holds for T. Hint: Consider a rectangle P whose sides are parallel to the coordinate axes, such that P shares one of the vertices with T and two other vertices of T are on the sides of P. Draw the picture. Notice that P is broken into four triangles, one of them is T, and there are three more, all of the kind considered in Problem 3. We already know that Pick's formula holds for P and the three triangles. Expressing the parameters for P in terms of the parameters for the triangles, prove Pick's formula for T.

Problem 5. Assume Pick's formula holds for a polygon P. Show that it holds for the polygon $P \cup T$, where T is a triangle and P and T share a side. Conclude that Pick's formula holds for any lattice polygon (not necessarily convex). Hint: This is very similar to Problem 2. Denote the number of lattice points of the common side by c.

Problem 6. Let M be the centroid of a triangle $A B C$. Show that if you connect M to the vertices of $A B C$ you will break $A B C$ into three triangles of equal area. Show that no other point N inside $A B C$ has this property.

Problem 7. Let $A B C$ be a lattice triangle that has just one integer point inside and the only lattice points on its boundary are the vertices. Show that this interior lattice point is the centroid of $A B C$. Hint: Use Picks formula ($A=I+B / 2-1$) and the previous problem.

Problem 8. Pick's formula, in particular, says, that in order for a polygon to have a large area, it needs to have a large overall number of lattice points inside and on the boundary. Show that this is not the case in 3D, that is, a 3D polytope with fixed I and B can have huge volume. For this, consider the tetrahedron with the vertices $(0,0,0),(1,0,0),(0,1,0)$, and $(1,1, c)$, where c is a positive integer.
Problem 9. Let P be a lattice polygon with a few lattice holes. Can you adjust Pick's formula so that it works for such a polygon?

